In advanced programming languages curricula, the λ-calculus often serves as the foundation for teaching the formal concepts of language syntax and semantics. LambdaLab is an interactive tool that helps students practice λ-calculus reduction and build intuition for its behavior. To motivate the tool, we survey student answers to \lambdaλ-calculus assignments in three previous classes and sort mistakes into six categories. LambdaLab addresses many of these problems by replicating the experience of working through \betaβ-reduction examples with an instructor. It uses visualizations to convey AST structure and reducible expressions, interactive reduction to support self-guided practice, configurable reduction strategies, and support for encodings via a simple macro system. To mimic informal, in-class treatment of macros, we develop a new semantics that describes when to expand and contract them. We use case studies to describe how LambdaLab can fit into student workflows and address real mistakes.
Mon 5 NovDisplayed time zone: Guadalajara, Mexico City, Monterrey change
13:30 - 15:00 | |||
13:30 30mTalk | Bridging the Gap for At-Risk Cohorts: Experimenting with English Language Learners SPLASH-E File Attached | ||
14:00 30mTalk | LambdaLab: An Interactive Lambda-Calculus Reducer for Learning SPLASH-E File Attached | ||
14:30 30mMeeting | Discussion SPLASH-E |